

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year II Semester Regular Examinations October 2020 ADVANCED ALGORITHMS

	ADVANCED ALGORITHMS	
	(Computer Science & Engineering)	
Time:	3 hours Max. Marks: 60)
	(Answer all Five Units $5 \times 12 = 60 \text{ Marks}$) UNIT-I	
1	What is Topological Sorting? Explain Topological Sorting with Algorithm & Example.	12M
	OR	
2	Compare and Illustrate different "Minimum Cost Spanning Tree" finding algorithms.	12M
	UNIT-II	
3	What do you mean Matroid? Discuss any two Greedy Algorithm Techniques.	12M
4	OR Write about following	
7	a Warshall's Technique	6M
	b Graph Coloring Problem	6M
	UNIT-III	
5	Illustrate Strassen's Algorithm with an Example.	12M
	OR	
6	Differentiate following techniques a Maximum Flows and Minimum Cuts in a Graph.	6M
	b Max Flow Equals min cut	6M
	- 1.1m. 1.10 // =4.0m. 1.1m. 0.00	01/1
	UNIT-IV	
7	Write Algorithms for following	
	a Travelling Sales Person Problem.	6M
	b Towers of Hanoi.	6M
8	OR Define Finite Automata? Discuss Chinese Remaindering and Interpolation of	12M
· ·	Polynomials	12111
	UNIT-V	
9	Illustrate Geometry of the feasibility Region and Simplex Algorithm.	12M
	OR	46
10	Write in detail about Interior point Method.	12M
	*** ENID ***	

*** END ***